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NOMENCLATURE 

dimensionless coefficient ; 
dimensionless amplitude ; 
dimensionless coefficients; 

= l’gp’/u’( = Ra/Ma); 
dimensionless third order solvability 

coefficient ; 
specific heat at constant pressure 

[J/k Kl ; 

= tip/d (Crispation group); 
dimensionless Z-dependence of velocity 
differential operator; 
magnitude of acceleration of gravity 

[m/s”] ; 

= pogl’( 1 + [)/a (gravity wave group); 
heat-transfer coefficient at free 

surface [J/m2 s K] ; 
dimensionless mean curvature; 
dimensionless heat flux ; 
thermal conductivity [J/m s K] ; 
unit vector antiparallel to gravitational 
field ; 
layer depth [m] ; 
differential operator; 

= la’AT/tip (Marangoni group); 
unit outward pointing normal; 
differential operator; 

= hi/k (Nusselt group); 
dimensionless pressure ; 
= pC,/k (Prandtl group); 
dimensionless coefficients ; 
= 13gp’AT/rip (Rayleigh group); 
temperature difference across layer [K] 
dimensionless temperature; 

dimensionless velocity; 
dimensionless solution vector; 

1, 
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1 ‘, 

Nk 
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Pr, 
sit 

Ra, 
AT, 
T 
U, 

V, 
(x, _v, z), dimensionless position 

coordinates. 
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Abstract- A nonlinear analysis of cellular convection driven by buoyancy and surface tension forces in a 
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Other symbols 

V, gradient operator; 

V., divergence operator; 

V2, Laplacian operator. 

Scale factors 

time: P/K [s] ; 
velocity: ti/l [m/s] ; 
temperature: (7;- &), q > 7; [K]; 
pressure: y~/l’ [N/m’] ; 
. ..r- 
length: I LmJ. 
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Greek symbols 

magnitude of wave vector; 
dimensionless wave vector; 

dimensionless linear growth rate; 
transition point from hexagons to rolls; 

= AT/I [K/m] ; 
dimensionless z-variation of vertical 
vorticity; 
thermal coefficient of expansion [K- ‘I; 

dimensionless surface deflection; 
angle ; 
thermal diffusivity of fluid [m’js] ; 
viscosity [Pas] ; 
(x, _r, t) dependence of disturbance; 
(x, y) dependence of disturbance: 
domain occupied by fluid layer; 
boundary of domain R. 

Subscripts 

b, bottom of layer; 

h, hexagons ; 
0, reference state; 

r, rolls ; 
S& steady state; 

r, top of layer; 

.6 interface quantity. 

Superscripts 

f, transpose; 
* critical value or adjoint; 

z-derivative; 
r-derivative ; 
time average. 
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1NTRODUCTlON 

THE SPONTANEOUS generation of form and structure 
has provided the stimulus for the study of many 
seemingly diverse physical phenomena. One such 

example is the spontaneous generation of flow, and 
concomitantly form. in an initially quiescent, hori- 
zontal layer of fluid in mechanostatic, but not 

thermostatic (or speciestatic) equilibrium. In many 
instances, the latter system exhibits a striking array 
of convection cells called after Bt-nard which are 

spatially periodic: in other cases very bizarre 
patterns are induced. The pioneering quantitative 

experimental results for thin fluid layers heated from 

below with the upper surface exposed to the 
atmosphere reported by Bknard stimulated Lord 
Rayleigh to propose and theoretically analyze a 
buoyancy driven prototype system. It is now well- 

known that the qualitative agreement between 
Rayleigh’s theory and BCnard’s experimental results 
was fortuitous since the cellular convection observed 

by BCnard was primarily surface tension driven. 
However, Rayleigh’s analysis of the buoyancy driven 
prototype system provided impetus for not only 
linear stability theory in fluid mechanics, but also 
many subsequent investigations of Bttnard con- 
vection. In fact, a recent survey of the literature by 

Velardk [l] lists more than 400 contributions; 

consequently, here in the interest of brevity the 
interested reader is referred to Chandrasekhar [2], 

Segel [3], Koschmieder [4] and Rogers [5] for 
comprehensive surveys. 

The first investigation directly related to the 
surface tension aspects of the present work was due 
to Pearson [6] who proposed and analyzed the 
initiation of convection in a transversely infinite thin 
layer of fluid resting on a rigid surface heated from 

beneath. The flow was driven entirely by a surface 
tension gradient resulting from temperature vari- 
ations along the free interface, that is, by a “surface 

engine”. Striven and Sternling [7]. Smith [S], Berg 
and Acrivos [9] and Berg [lo] refined Pearson’s 
model by incorporating a more realistic interface. On 
the other hand Nield [I21 combined the Rayleigh 
and Pearson models to analyze the initiation of 

convection driven by the combined surface 
tension- buoyancy mechanism and subsequently, he 

extended this analysis (Nield [12]). Nield’s analyses 
established. as expected, the additivity of the two 
mechanisms in the generation of kinetic energy and 
also the dominance of the surface tension mechanism 
as the layer depth decreases. Some unusual experi- 

ments by Grodzka and Bannister [13] done during 
the flight of the Apollo XIV spaceship at IO-‘g 
demonstrated that surface tension gradients can lead 
to cellular convective motion when a certain critical 
temperature difference is exceeded but appeared to 
cast some doubt on the additivity of the two 

mechanisms. (A doubt not supported by linear 
theory or the nonlinear theory presented herein.) 

The theoretical investigations cited previously are 
linear stability analyses which can predict a so-called 

critical temperature gradient at which a flow pre- 
sumably first ensues and also the wave number, that 
is, a measure of the mean transverse cellular 
dimension, of the fastest growing disturbance. The 

deficiencies of the linear theory are the inability to 
predict the evolution of a disturbance and the final 
size and shape of the cellular structure. The intent 

here is to gain some additional insight into The 
combined surface tensions buoyancy mechanism by 
investigating the nonlinear stability problem. In 
particular, such nonlinear aspects as subcritical 
instabilities, convective heat flux and the prediction 
of stable spatial tessellations, such as rolls and 

hexagons, are considered. However, for simplicity the 
above properties are divorced from the question ol 
cell size which is presumed to be known. 

PROTOTYPE SYSTEM AND LINEAR 
STABILITY ANALYSIS 

The prototype system to be investigated herein is a 

quiescent, thin, horizontal layer of Newtonian fluid 
of infinite horizontal extent resting on a heated, rigid 
surface of high thermal conductivity and capacity. 

Initially, a time-independent temperature field T,, 
with a gradient of magnitude ;’ is present. That is, 

r,, = T,+;*:. (1) 

The standard Boussinesq approximation (Spiegel 
and Veronis [14], Mihaljan [IS]) is enforced with 
linear temperature variation of density in the 

buoyancy force term and of surface tension in the 
surface force term. The rigid bottom surface is 
likened to a metallic flat plate of very large thermal 
conductivity and capacity and consequently it is 
assumed that the velocity field vanishes and the 
temperature remains constant on the plate. The free 
surface is assumed to be deformable and in only 

thermal communication with the gas above it. 
Moreover, for simplicity the free surface is assumed 
to be Newtonian and is not endowed with surface 
shear or dilatational viscosities although these could 
easily be incorporated into the analysis. 

The dimensionless mathematical characterization of the dynamics of the system can be cast in the 

following form : 

V2u-VVp+BMakT= Pr-' “;+~+u). 
( 

(2) 

v.u==o, (3) 

V’T-k.u = ~~+u.VT, (4) 

u=O, T=O) ; = 0, all S??‘, (5) 
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n.VT+NuT = 0 
3 

W-~-“*v~=0, 

: 
z = 1 +rl(x,y) all X,J 

2nn:Vu-p-Man~V,T-2C;‘.~ = 0, 

V,;[n,Vu+n.(Vu)‘~]-V;(np)-2C;‘V;(nH)-MaV,2T= 0, 
i 
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(6) 

u, T - bounded. ( 
Here u is the velocity field, T the temperature field, p 
the pressure field and am) characterizes the 
deviation of the free surface from its initial static 
position z = 1. 

Most previous investigations known to the 
authors, except one due to Scanlon and Segel (161 
which will be compared with the present study, deal 
with the linear stability problem. The linear stability 
problem and its companion adjoint problem which 
will be defined here play a fundamental role in the 
nonlinear analysis. Since the linear problem has been 
considered in detail elsewhere [ 171 only some of its 
more important aspects are recapped here. 

LINEAR STABlLiTY ANALYSIS 

The Iinear stability problem is generated by 
neglecting the nonlinear terms in equations (2)-(7) 
and linearizing boundary conditions (6) about z = 1 
and the solution can be cast in the following general 
form [2] : 

u”’ = {j; (z)@,(x,js, t)k 

+ f[91;V,m-6,(1)(1\10,6)1; (8) 

T”’ = g,(r)@(x,!:t). 

Here J(z), S(z) and g(z) are, respectively, the Z- 
dependence of the vertical component of velocity and 
vorticity and the temperature, and @(.u,JJ, t), called 
the planform function, is required to satisfy a two 
dimensional Helmholtz equation, 

v$D = -cl%, (9) 

in which x, the wave number, is real-valued and 
according to linear theory 

The requirement that @ be periodic in the horizontal 
plane leads to an infinitude of possible Q’s for a 
given value of i12 as well as an infinite number 
(actualiy a continuum) of values of a’, Since the 
present investigation is not concerned with the 
prediction of the lateral size of the convection cells, 
only Q’s of a given value of SL’ are of interest at this 
point. It should also be pointed out that 6, = 0 in 
equation (8) for the case being considered. 

The substitution of expression (8) into the 
linearized version of equations (L?)-(7) leads to an 
eigenvalue problem which was solved numerically by 
using a fourth order Runge-Kutta scheme as an 
alternative to evaluation of the exact solution 
because it afforded a better foundation on which to 
build the subsequent calculations required by the 

7) 

nonlinear theory. (The accuracy of the scheme was 
checked by comparison with exact solutions.) Mar- 
ginally stable solutions to the linear stability pro- 
blem were generated over a wide range of parameter 
space. It is noteworthy in this respect that the results 
of Striven and Sternling [7] indicate that if the 
Crispation number exceeds approximately lo-” 
there exist no nontrivial values of the Marangoni 
number corresponding to a marginal stability state. 
However, as pointed out by Smith [S] the inclusion 
of gravity waves at the interface in bi-layered systems 
remedies the problem in many cases. The gravity 
wave contribution was included in the present 
analysis but here also instances were encountered in 
which the Marangoni number exhibited either no 
minimum or only a reiative minimum as a function 
of wave number (see Tabie 1). In this regard it is 
noteworthy that the inclusion of gravity wave effects 
results in the appearance of a gravity wave number, 
G, which appears only in the free surface boundary 
conditions. Its primary effect is on the magnitude of 
the surfdoe deflection whose maximum is 

h = (ml) 

a2 
i 1’ ;+I 

(10) 

where h( 1) is a function of the vertical velocity, Cr is 
the Crispation number and r is the wave number. 
The basic effect of G on the stability of the system is 
to shift the critical wave numbers to smaller values, 
that is, to produce larger cells at onset. This effect is 
easily detectable by a perusal of Tables 1 and 2 
which also illustrate the occurrence of critical 
Marangoni numbers for some cases in which 
Crispation number is IO-‘. The occurrence of 
downflow under depressions in the tessellated surface 
for a primarily buoyancy driven flow and the reverse 
for primarily surface tension driven flows is predicted 
by the linear theory and substantiated by obser- 
vation (see Table 2). 

Typical variations of critical Marangoni number 
and corresponding wave number as displayed in Fig. 
1 and detailed in Tables 1 and 2. The minimum in 
critical wave number apparent in Fig. 1 occurs in all 
cases except the Nu = 0 cases and the case of Cr 
= 10e3, Nu = 0.5 and reflects an interplay between 
the buoyancy and surface tension forces. 

NONLINEAR ANALYSIS 

If attention is restricted to disturbances and 
cellular flows of a single wave number, a, the 
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Table I 

Nu = 0.0. G = 0.0 

79.607t 65.0X I 37.086 Il.571 6.2078 3.2204 1.3176 669.00 
0 1.993 I .994 2.016 2.058 2.070 2.078 2.082 2.086 

79.496 65.092 37.140 11.580 6.2105 3.2210 I.3177 669.00 
lOm1 1.988 1.993 2.018 2.060 2.07 I 2.07X 2.082 2.086 

78.476 65.192 37.639 I I.661 6.2353 3.2279 I.3187 669.00 
IO ’ I 947 I .9x3 2.036 ?.072 7.079 3.082 2.1)X4 2 OX6 

~___ 

/vu = 0.5. G = 0.0 

98.256 78.587 42.807 12.813 6.8156 3.1592 1.4356 727.42 
0 2.142 2.136 2.151 2.188 2.199 2.205 2.209 2.21’ 

98.151 78.61 I 42.855 12.816 6.8151 3.5182 1.4351 727.07 
IO 1 7. Ii0 2.134 ’ 152 ’ IXX 2 19X 2.204 7.20X 2 210 

97.182 78.835 43.299 Ii.843 6.8098 3.5092 I .4299 723.89 
I()_” 2.106 2.129 2.164 2.187 2.192 2.194 2.195 7.196 

Nu = 2.0. G = 0.0 

150.68 113.39 55.202 15.148 7.9285 4.0584 I .6467 x31.27 
0 2.386 2.357 2.353 2.37X 2.384 2.388 2.39 I 2.393 

150.57 113.44 55.234 15.140 7.9226 4.0548 1.645 I x30.40 
IV” 2.384 2.356 2.353 2.376 2.382 2.386 2.3XX 2.390 

149.57 113.94 55,523 15.072 7.8685 4.07 I5 I .6303 x22.44 
lo-’ 2.360 2.354 2.353 2.358 2.359 2.360 2.360 2.361 

tUpper number is Mu* and lower number is c(*. 
$ Here the critical value of Rayleigh number and corresponding wave number are listed 

Table 2 

Nu = 0.0, Cr = 0.01 

>-------.-” O 0.7 IO 50 100 7 

44.470( + ) 
0 : i t 2.296 8 

44.102(+) 
0.2 : : 2.2725 

68.975( - )t 68.389( - ) 42.865( +) 
1 1.5018 1.6638 2.914 

78.799( - ) 73.500( - ) 37.501( +) 
50 I.978 1.979 2.013 

12.568( + ) 6.4991( +) 
2.204 2.154 

12.524( + ) 6.4863( + ) 
2.193 2.147 

12.376( +) 6.4439( + ) 
2.156 2.126 

ll.642(+) 6.2296( + ) 
2.059 2.07 I 

669.00( + ) 
2.0X6 

669.00( + ) 
2.086 

669.00( + I 
2.0X6 

669.00( + ) 
2.086 

R’rr = 0.5, Cr = 0.01 

49.428(+ ) 
0 -i i- : 2.351q 

X4.697( - ) 49.111(-t) 
0.2 

88.3{9( 
1.733$ 2.331s 

- ) 86.163(-) 48.050( + ) 
1 I.793 I .906 2.27 I 

97.373( - 11 90.085( - ) 43.223( +) 
50 2.128 2.126 2.146 

13.145(+) 
2.175$ 

13.130(t) 
2.174 

I3.080( + ) 
2.170 

12.839(+) 
2.184 

6.7427( + I 
2.1073 
6.7466( + ) 
2.113 
6.75X7( + ) 
2.131 
6.8106(1-) 
2.194 

68X.41(+) 
2.012q 

690.46( + ) 
2.033 

696.57( + ) 
7.083 

724.30( + ) 
2.206 

tupper number is Ma* and lower number is a*. ( + ) or ( -) indicates upflow under, respectively, surface elevation or 

depression. 
.,No minimum. 
SRelative minimum. 

nonlinear stability problem can be posed in the what are the possible stable equilibrium sets 

following manner: Given a disturbance whose {A,,,(cc)} and associated convective transport? 

(s._r, r) dependence @ is The particular form @ is suggested by the general 

CD = i: .4,,(f)~,(.X_, r), 

Fourier integral representation theorem and is 
(I I ) employed because of one’s inability to handle the 

,,I = L integral representation. The mathematical tool used 

V&, = - 22$m, (I la) in analyzing the nonlinear stability problem is a 
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FIG. 1. Linear stability critical states. 

modification of an asymptotic perturbation tech- 

nique due to Stuart [18] and Watson [19]. (See 
Segel [3] for a discussion of the method and Segel 
and Stuart [20] and Sani [21] for particular 
applications.) By adding -/jPr-‘u and -/1T 

respectively to equations (2) and (4), a form of the 
nonlinear equations appropriate for the present 
analysis is generated. In addition if 

U 

v= c’ 

0 
w ’ (1-a 

T 

then operators .&, .% and .1. can be defined in an 
obvious fashion such that equations (2) and (4) can 
be rewritten in the following operator form: 

.W(V)-b.F(V) = &l’(V). (13) 

The complete specification of the system is obtained 

by appending equations (3), (5), (6) and (7) to 
equation (12). 

The fundamental building block for the nonlinear 
theory is the linear stability problem which here is 
cast in the form 

.I(V’“)-ps(v”‘) = 0, (14) 

plus the continuity equation (3) and the boundary 

data (5) (6) and (7). For simplicity it is necessary to 
invoke the so-called principle of exchange of stab- 
ilities, that is, the property that p is real-valued. (The 

latter property has been verified by Vidal and 

Acrivos [22] and also by the present authors for a 
layer with no surface deflection, that is, Cr = 0; 

however, a cursory investigation of the general case 
does not preclude the possibility of overstability in 
general and especially if the ratio (Pr/Cr) is 
sufficiently small.) In this case the marginal linear 
stability problem corresponds to B = 0 and leads to 
a critical Marangoni number Ma* and a critical 
wave number CI*. (The latter also corresponds to the 
fastest growing disturbance if Ma > Ma* that is B 
> 0.) The linear growth rate factor p corresponding 
to any value of Ma can be computed from the 

characteristic equation associated with the linear 

stability problem and for p close to zero is 

approximately proportional to (Ma-Ma*). 

The exponential amplification of an unstable 

disturbance according to linear theory is completely 
unacceptable in the light of physical observations. 
Therefore, it might be expected that a perturbation 
scheme which starts with the entire space-time 
dependence of linear theory might encounter some 
difficulty-the erroneous conclusions of Struminskii 
[23] serve as a good example. However, it is 

experimentally observed that apparently the spatial 
dependence predicted by linear theory is a rather 

good approximation in many cases. (See Stuart [24] 
for a comprehensive discussion of this point.) 
Consequently, the starting point of the perturbation 
scheme outlined here is the linear theory solution, 
equation (8) coupled with the planform function @ 

of equation (9) in which the set of amplitudes (A,,,(t)) 
are unspecified. That is, 

and accordingly, 

(15) 

The basic step in the perturbation scheme is the 

determination of evolution equations for the ampli- 

tude set {A,(t)} at each step. Actually, only the 
asymptotic evolution for times which are large 
enough such that initial conditions have no effect are 
of interest. The perturbation scheme can be for- 

mulated in the following abstract manner: 

,,(v(“))-p.F(Vn)) = I “(v-l’), I1 = 2,3,.. ., 

(16) 

with V(” given by equation (15). Additionally, the 
continuity equation and boundary conditions must 
be satisfied by each V”“. Here I “(V’“-I’) is the 
nonlinear operator t ‘(V(“-‘I) truncated at terms of 

order n in the amplitudes (A,(t)). It is noteworthy 
that the present method neglects initial conditions. 
However, a similar technique can be used to solve 
the initial value problem, and the present results are 
good approximations outside of a “time boundary 
layer” near zero time, that is, a region in which the 
solution is strongly affected by the initial data. The 
two solutions agree exactly in the limit of infinite 
time. 

At each stage of the perturbation scheme a 
nonhomogeneous boundary value problem must be 
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solved. In order for a solution to exist the “solva- 
bility condition”, 

;Z [ ’ “(v 
@-‘I), VT] = 0, n 3 2. (17) 

must be satisfied for all time. Here 

A,B,dR. (18) 

and VT is the solution to the adjoint system: 

v%* -P, ‘v*p = 0, (19) 

v,u* = 0, (20) 

V2T*-k.u* = 0 (21) 

II* =O, T* =0 on z=O, (22) 

w*=o, k on z = 1 (23) 

v,.g+vw* =o, I 
I 

u*, T* remain bounded. (24) 

The solutions of the adjoint system may be written in 

a form similar to equation (8). The evolution 
equations for the amplitude set {A,,,(t)} are generated 
in fulfilling the solvability condition, equation (16). 

AMPLITUDE EQUATIONS 

The evolution equations for the amplitude set 

(A,(t)], hereafter referred to as amplitude equations, 
are generated by satisfying the solvability condition, 
equation (17). The well-known linear theory approxi- 
mation to the amplitude equations is 

k,=BA,, m= 1,2 ,..., N. (25) 

As previously pointed out this form is unacceptable 
since it predicts either exponential growth or decay. 
Therefore, the modification of the amplitude equa- 
tions by the nonlinear theory is of prime concern. 

The form of the amplitude equation may be modified 
whenever the nonlinear operator I ‘(Vi”-“) gen- 

erates a vector whose (.y,j,)-dependence is identical 

to one of the original Vg’ associated with equation 
(15). The latter is called (x,Jl)-replication after Segel 
[25]. (It should be pointed out that Segel’s definition 
of replication also takes into account z-dependence 
of the vector.) 

It has been established by Scanlon and Segel [16] 
and others that for (x,y)-replication to occur at 
second order it is required that the product of two 
planform functions, say 4i and $j, of the initial set 
contains a term proportional to one of the initial 
planform functions, say &. The process can best be 
visualized by using the exponential form of the 
solution to equation (lla) for then a set Q of 2-D 
vectors can be associated with the set {4j}. Then the 
replication -property follows if a,+ = ai with 
a,,a,,aj~R; that is, the three wave vectors form an 
equilateral triangle. (Note that all the original 

planform functions (4i, i = 1,2.. , N) have the same 
wave number and hence all associated wave vectors 
have the same length.) Similarly, at third order (.Y,J,)- 
replication can only occur if the product of planform 
functions associated with the second order solution 

V”’ and the initial planform functions contains ;I term 

proportional to one of the initial planform functions. 
In terms of wave vectors the third order replication 
process corresponds to formation of ;I general 
triangle. 

According to linear theory a system is stable if /I 
< 0; however, in certain systems a so-called subcriti- 
cal instability can occur due to nonlinear effects the 

present system is an example. (See. for example, Sani 
[21], Joseph and Shir [26], and Segel and Stuart 
[24] for discussions of subcritical instabilities.) If :I 

subcritical instability is to be predicted, the ampli- 
tude equations of linear theory, equation (25), must 
be modified by the solvability requirement of the 
higher order perturbation equations. This modifi- 
cation is first possible at second order. In the latter 
case the first components Vl:’ of the linear solution 

which have a possibility of growing for /j < 0, that is, 
can modify their amplitude equations, are associated 
with those planform functions, or equivalently, wave 
vectors, which satisfy the second order replication 
property. Associated with each wave vector are two 
real planform functions. and it can be shown that 
there is a one parameter family of six planform 
functions, or associated Vz”s. which have the first 
opportunity to lead to an instability. (See Segel [25] 
for a discussion of this point w,ith respect to the 
buoyancy driven case.) The parameter associated 

with the family specifies the orientation of the 
tessellations. Consequently, if it is assumed that only 
one family starts growing the parameter can be 
chosen to be zero since the stability of the various 
tessellations in an infinite plane should be inde- 
pendent of their orientation. The restriction to the 
initial growth of only one family implies that systems 
with rather uniform cellular patterns are being 

studied. 
When the second order terms in the amplitude 

equations of the most dangerous disturbances out- 
weigh the stabilizing first order term for /i < 0. their 
amplitudes grow. As the amplitudes become larger 
the third order terms in the amplitude equations are 
important. In the buoyancy driven case [25,27], the 
third order terms in the amplitude equations of the 
first six disturbances to grow can be shown to be 
stabilizing, that is, make a negative contribution to 
Ai, tii = 1,2,. .,6: consequently, when the first 
unstable disturbances start growing the remaining 
disturbances are just stabilized by third order terms. 
Subsequently, it is shown here that all third order 
terms need not be stabilizing in the case of the 
general surface tension-buoyancy driven Row. 

For simplicity the stability investigation is in- 
itiated by considering a family of six disturbances 
which can first replicate at second order, that is. six 
disturbances which can possibly grow nt ;I subcritical 
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value of the Marangoni number, 

,’ 
(D = A,(l)sin~~rsinlay+A~(~)~os~nxsinf~~~ 

312 31i2 
+A,(t)sin~~+A,(~)sin-~-~xcos~l;+A,(~)cos~-2-~-i(~Cos~J;+A~(tfCosn?‘. (26) 

plus a seventh disturbance 

A~(t)cosm~Xcosnft~, n1’+n2 = 1. (27) 

Here it is restricted that 0 E tan-‘(n/m) is not equal to f 30” or 90”. This restriction on B is necessary in 
order to focus on only one “60”-triplet” of wave-number vectors plus one additional wave-number vector. (It 
is noteworthy that the seventh disturbance corresponds to a “rectangular tesseIlation” which is possible 
according to linear theory but which is disallowed by Stuart [I41 on physical grounds.) The amplitude 
equations to third order are: 

A, =b’A,-u,(A,A,+A,A,) -A~[~~(A:+A:+A;)+b2A;+b3(A~+A~)+b6A;]-~b,A,A,A,, 

Ah=pA,-~(A:+AS-A:-A:!-A,[~b,(A:+A:+A:+A:)+b,(A:+A:)+b,A:], 

A, = ~A,-A~[~~(A~~A~+A~+.4~)+2b~(A~+d~)+b~A~].(b~ = bl -$b,, b, = h,-b,). 

Note that second order terms do not appear in the 
seventh amplitude equation because the seventh 
disturbance cannot satisfy the (x,y)-replication re- 
quirement by interacting with any of the other six 
disturbances. inclusion of other disturbances which 
do not replicate with the first six disturbances or 
among themselves leads to amplitude equations of 
the same form as equation (34). For example, 
inclusion of 

A,(t) cos m.x sin n%y, (35) 

A,(t) sin mlxx cos nay, (36) 

A, o(t) sin I?II;LX sin nay, (37) 

leads to A,, A,, and Alo equations which are simitar 
to A, in that no second order terms appear. 

At this point it is illuminating to perform a 
rotation of coordinates in order to transform the 
amplitude equations (B--(34) into the form (see 
also Segel 1251): 

B, = /le-uIB,B,cos(f), -i-e,+@,) 

-B,(~(s,B:is*B:+s,B:+.~~~~) (38) 

B, = BB,-a,B,B,cos(f3, i-8,+01,) 

-B,(s,B~Cs5BZ+s,B:+s,B:) (39) 

s, = /IB,-a,B,B,cos(0, +0,+&) 

-B,(s,B:+s,B,2+SgB:+slB:) (40) 

&, = BB,-B4(S,B:+szB:+s,B:+s,B:) (41) 

B,B, = a,B,B,sin(@, +@,+f&) (42) 
HMT Vol. 22. No.>-D 

(28) 

(29) 

(30) 

(31) 

(33) 

(33) 

(34) 

where 

&ri, = a,B,B, sin(8, -l-B, -i-B,) (43) 

B,(i, = a,B,B2sin(B, +O,i-8,). (441 

B: = A:+&, B:-kB: = $(A;+A;+A;+A;). 

B,2-3: = A,A,-AzA,, B,= AT, 

0, = -tan-‘(,4,/A,), 

6, = tan-‘[(A,-A,)I(AItA,)], 

O3 = tan-‘[(A, + A,)I(A, - A,)], 

SI = 4co+~(c,+C,i, s2 = ~c,+_i(c,-l-c,) 

sj = +C,+++$T,,,+C,,) = ‘b:, 

Sg = +c, +$Cdr s8 = b3 = +c,, ++(c, -kc,), 

q =4-p, s = 4-5, n = 4-m, 

b, =&(4C,-2C,-2C3+C,), b2 =“v 

b4 = s8-ss. 

The values of p, r and 12% depend on the form 
chosen for the disturbance which is not in the “most 
dangerous triad” and are a function of 

0 S tan-‘(cc,/a,) 

associated with the wave vector a of this disturbance. 
The coefficients C, are obtained by evaluating the 
third order solvability condition (equation (16) with 
ft = 3) with V”’ replaced by VP’, the ha’-wave 
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number component of the second order solution 

V’2’ = 1 Vf’, 
h 

Some typical values of the coefficients sg and s8 are 
tabulated in Table 3, and some typical C, coefficients 
are displayed in Figs. 2-4. Figure 4 displays the 
behavior exhibited by the infinite layer mode1 treated 

by Scanlon and Segel [16]. (In the latter case an 

analytic expression was developed, and the numeri- 

cal integration scheme utilized in all other cases 
yields identical values to within roundoff error.) The 
coefficients a,, ss and sR are necessary in the 
determination and assessment of the “primary stab- 
ility” of equilibrium states and the C’,, coefficients are 

necessary in the determination of the “secondary 
stability” of the equilibrium states. (Herein primary 

and secondary stability refer to stability relative to 
the six first replicating disturbances and to distur- 
bances outside this set, respectively.) 

Table 3 

Nu = 0.0, G = 0.0, Pr = 8 

0 -0.5817 0.7526 1.022 - 0.0302 3.501 11.76 
0.7 - 0.5429 0.7151 0.9690 -0.027X 3.268 10.96 

IO 0.0 - 0.2786 0.5173 0.6833 -0.0103 1.457 4.837 
100 - 0.04648 0.4151 0.5223 - 0.0004 0.078 I 0.2543 

x 0.0 0.4010 0.4979 0.0 0.0 0.0 

0 - 0.5893 0.8226 1.148 - 0.0278 2.69 1 9.137 
0.7 -0.5358 0.7060 0.9729 -0.0271 2.846 9.615 

10 1om3 - 0.3087 0.5311 0.6746 -0.0127 2.461 8.047 
100 -0.2336 1.880 2.264 - 0.0029 0.6964 2.231 

cx: -0.3150 6.168 7.359 -0.0012 0.4314 1.377 

Nu = 0.0, G = 0.2, Pr = 8 

0 
0.7 

100 
cc 

1om3 
- 0.6349 
-0.5711 
- 0.2045 
-0.2217 

0.9527 1.329 - 0.0279 2.710 9.202 
0.7990 1.100 - 0.0272 2.8X5 9.739 
1.656 2.000 -0.0018 0.5874 1 .X84 
3.854 4.610 - 0.0009 0.3314 1.059 

Nu = 0.5, G = 1.0, Pr = 0.025 

0 - 0.6801 1.985 3.125 -0.0141 0.7072 2.52x 
0.7 1o-2 - 1.086 2.779 4.036 - 0.0272 2.075 7.162 

10 -0.1861 0.2009 0.2465 -0.0125 3.343 10.79 

EQUILIBRIUM STATES 

There are five genera1 types of equilibrium states 

associated with equations (38)-(44) (or equations 

(28)~(34)). 

(1) Helugon.~ 

+ [U1 + (af +4aS)“‘] 
B,, = B,, = B,, = m- 

2s 

B,, = B,, = 0 (45) 
sin(0, +H2+03) = 0, S = 2s,+s,, 

cos(H, f02fN,) = * 1. 

(2) Rolls 

t ! 
-3- I I B,, = k b/4 ‘,‘2, B,, = B,, = B,, = B,, = 0. (46) 

I 1 ! 1 # (3) Mixed-l 
0 

I(, 
-4 1 

FIG. 2. Third order interaction coefficient for finite depth 
B,, = B,, = T + 

i 1 

1*2 
. B,, = B,, = B,, = 0. 

‘3 
layer which is primarily surface tension driven. (47) 
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STABILITY OF EQUILIBRIUM STATES 

The stability of the equilibrium states was in- 
vestigated by means of a linear stability analysis of 

the amplitude equations (38)-(44). This analysis 

established that in all cases investigated the general 
polygonal and the mixed states were unstable and 
hence only the hexagonal and roll equilibrium states 
need be considered. If initially attention is restricted 
to the six most dangerous modes (see equation (26)), 

the following constraints must be satisfied for 
asymptotic stability: 

Pr =m 

Cr=O,G=O - 
-2 C,.1O+,G=50----- 

-3 

1 i 

-4- 
FIG. 3. Third order interaction coefficient for buoyancy 

driven finite depth layer. 

FIG. 

h 

4. Third order interaction coefficient for surface 
tension driven semi-infinite layer. 

(4) General polygons 

B,, = $2 B,, = B,, = ‘4 
sin(0, +e2+Q3) = 0, 

cos(0, +Q2 +e,) = 1. 

(5) Mixed-2 

B,, = B,, = B,, = 0, 
112 

. (49) 

In all the cases considered herein sg, ss, sg-sg are 
positive and consequently, the only possible subcriti- 
cal equilibrium flow states are the hexagonal and the 
two mixed states and the latter require that sg + sj 
and s1 + ss be negative. 

(a) Hexagons 

2 

-a,</?< 
a?& +2s5) 

4T (s8-s5)2 ’ 

plus the restriction that if a, < O(a, > 0), then the 
negative (positive) sign is selected within the brackets 

appearing in equation (45). 

(b) Rolls 

(51) 

Since the linear growth rate factor, p, is pro- 
portioned to (Ma-Ma*), stable hexagons can exist 

both subcritically and supercritically while stable 
rolls are restricted to supercritical states. This result 
is similar to that of Segel [3] for the thermoconvec- 
tive case. Figure 5 illustrates this hierarchy of stable 
equilibrium states. 

ROLLS 

HEXAGONS + ROLLS 
$2 = ss 0; 102 

HEXAGONS + UNDISTURBED STATE 
8, =-of 14T 

UNDISTURBED STATE 

FIG. 5. Dynamic equilibrium states. 

In the general case the additional disturbance 
leads to the following additional stability constraint: 

(a) Hexagons 

(b) Rolls 

(so +s2+s3) > BIB:,. (52) 

B(s3 -SJ% < 0 (B 3 B2). (53) 

Consequently if no disturbance can be found which 
violates these inequalities the hexagonal or roll 
solutions will also be stable to this disturbance; 
moreover, Segel [25] has shown that in this case the 
results of the seven disturbance analysis also are 
valid for the case of N-disturbances if one restricts 
attention to a single initial replicating triad and 
truncates at third order. 
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In the range of parameters investigated in this 
study rolls and hexagons were stable in all cases 
considered when attention was restricted to the six 
most dangerous modes. i.e. the first replicating triad 
in wave number space. Subcritical-supercriticai hex- 
agoual and supercritical roll solutions are stable for a 
linitc depth. constant property (Boussinesy approxi- 

mat ion) layer when both the surface tension and 
buoyancy mechanisms are active (B # x). The 

subcritical stability bound is well within the bound 
predicted by Davis [2X] using an energy method. 
,Also stable hexagonal solutions are possible for a 
buoyancy driven layer if the deflection of the free 
surface is taken into account: the latter is in accord 
with the analysis of Davis and Segel 1291. The width 
of the band of stable hexagonal solutions (constant 
wave number), /I,-[{,. which is proportional to a 
AMtr. or ARtr, is an increasing function of Prandtl 
number. Pr, and Nusselt number, Ntr, and attains a 
maximum as a function of the ratio of Rayleigh 

number to Marangoni number. B. if the Crispation 
number. Cr. i> nonzero, i.e. the free surface is 
deformable and is a decreasing function of B if the 
free surface is non-deforlnable, Cr = 0. 

.3 

.2 

.I 

0 Y 

-.I 

-2 

-.3 
Nu=O. C,=.OOl / 

-.4 

FIG. 6. Typical horizontal variation of vertical \&city. 
temperature and surface deflection across center of hexa- 

gonal cell. Primarily surface tension driven case. 

The trailsition point from hexa~ona1 soIutions to 
roll solutions characterized by [i2 increases (de- 

creases) as the width of the hexagonal band increases 
(decreases) and hence the occurrence of rolls be- 
comes less (more) likely relative to hexagonal 

solutions. 

FIG. 7. Typical horizontal variation of vertical velocity, 
temperature and surface deflection across center of hexa- 

gonal cell. Buoyancy driven case. 
The direction of flow in all cases (except for some 

anomalous behavior for small Prandtl number (Pr 
= O.O_‘S) systems) is upflow (downflow) under 

depressions for a predominately surlke tension 
(buoyancy driven) driven How which is accord with 

observations (see Figs. h and 7). 
In many of the cases considered herein. except the 

purely buoyancy driven cases, no definite con- 
clusions could be reached concerning the stability of 

the system if the seventh disturbance was included. 
The dilkulty arises because of the singularity in the 
Ch vs /J curves which suggests a more refined analysis 
(possibly including sideband interactions in wave- 
number) is necessary and in many cases the 

occurrence of no stabilizing terms in the amplitude 
equation associated with the secondary disturbance. 
The latter occurs due to the signs of the coefficients 
in its amplitude equation: however, it is noteworthy 
Ihat in all cases in the buoyancy limit stabilizing 
terms appeared in accord with the results of Segel 
[3] and Davis [‘_S]. The secondary stability of most 
cases investigated here remains an open question 
both theoretically (moduio this model) and exper- 
imentally since either euperimerrts are lacking or do 
not clearly establish the existence of such stable, 

stationary Ilaws. 

4 10000, B- 0.1 and G _ I. For this case the 
theory predicts a stable flow of hexagonal planform 
with upflow under depressions which can commence 
at slightly subcritical Marangoni numbers. and 
hence agrees with observations. (In this cast the 
wave number, a. was set equal to 7.0 since no critical 
value is predicted by linear stability theory.) 

CONVECTIVE STATE PROFlLES 
AYD HEAT TRANSFER 

Once the appropriate equilibrium amplitudes are 
calculated the corresponding velocity, temperature 
or deflection profiles to second order are easily 
computed. The general form of the expression which 
encompasses the hexagondi and roll states is 

The observations of a flow with hexagonal 
planform by Btnard [30] and Koschmieder [4] were 
made using highly viscous (,i 2 0.1 Pas) and thin 
(4mm) fluid layers. Estimating the physical par&- 
meters for these systems kdds to Cr - lo-‘, Pr 

+ FM 
--Bf, 
-.$-- c0s(3)‘~%~C0S “>’ + GP ,cosQV 

i 
. (54) 
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it is convenient to form the ratio of the total cell- 

mean heat flux to that mean flux due to conduction 

alone, H;-taken at the free surface (z = 1 SY)). For 

convenience this may be taken at the surface z = 0, 

since the sides of the cell correspond to insulated 
walls. Then, H for hexagons and rolls becomes 

0 

0 

IH-I) 1 IO2 

0 I 

I 

a = 2.150 

P, =S 

N, -0.5 

‘A-- 

-. 

M; = 98.258 

-STABLE 1 

--- UNSTABLE R.¶\\: - _ 
-- 

_e- 

H3 OS93 ,000 ,001 1002 I.003 

i 

FIG. 8. Dimensionless heat flux. 

FIG. 9. Dimensionless heat flux. 

where F,. F2,,. F,,, FZ3 and F14 are known 
functions of Z. Figures 6 and 7 display a typical set of 
profiles for a predominately surface tension driven 
flow and buoyancy driven flow, respectively. Notice 
that in the predominately surface tension driven flow 
that there is upflow under depressions and vice versa 
for the buoyancy driven flow-a feature which 
agrees with experimental observation, 

The maximum absolute magnitude of the de- 
flection in these cases is approximately 0.4% of the 
layer depth which is consistent with the second order 
theory presented here. 

In order to characterize the cell-mean heat transfer 
due to each of the ensuing convective flow patterns, 

where an overbar designates a horizontal average. 
Figures 8 and 9 display this dimensionless heat flux 

for a typical case driven solely by a gradient in 
interfacial tension. Note that there is a large region 
where the roll state transfers more thermal energy 
than the hexagonal state but is unstable. This result 
if consistent with the variable property buoyancy 
driven flows considered by Segel [3] and illustrates 
an additional case which violates the occasionally 

invoked principle that the realizable cellular state is 
that one which maximizes the thermal energy 
transport. While the validity of the theory is certainly 

questionable at more than slightly supercritical 
states, Fig. 8 is included to illustrate that the theory 
suggests the destabilization of hexagonal cellular 
flows at supercritical states. It is noteworthy that the 
great enhancement of the stability of hexagonal flow 
states (compared to its buoyancy driven counterpart) 

evident in Fig. 9 is a consequence of the drive 
mechanism, as previously noted by Scanlon and 

Segel [16]. As buoyancy effects are increased, the 
enhancement as well as the region of possible 
subcritical instability decrease. 

DISCUSSION 

The convective states with hexagonal, or roll, 

horizontal planform predicted herein are characteris- 

tic of the type of motion sometimes observed 
experimentally. In these cases the behavior displayed 

in Fig. 8 as well as the possibility of a subcritical 
instability are qualitatively correct in general and 
quantitatively correct for the chosen case. However, 
the question of the stability of many of the finite 
amplitude convective states generated during the 
course of this study to arbitrary disturbances of the 

same wave number remains unanswered. 
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4. 

5. 
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CONVECTION DE B~NARD-.RAYLEIGH A A~FLITUDE FINIE 

R&sum&-On dtveloppe une analyse non-lineaire de la convection cellulaire avec force d’Archimtde et 
force de tension de surface dans une couche fluide de profondeur linie et chauffee par le bas. On ttudie la 
structure des cellules hexagonales supercritiques et la configuration de I’ecoulement de recirculation ainsi 

que le flux thermique associe. On dtcrit une analyse de stabilitt d’ttats possibles d’ecoulement. 

BkNARD-RAYLEIGH-KONVEKTION MIT ENDLICHER AMPLITUDE 

Zusammeofassung--Eine nichtlineare Analyse der durch Auftrieb und Oberflfichenspannungskrlfte 
bewirkten zellularen Konvektion in einer von unten beheizten Fluid-Schicht endlicher Tiefe wird 
beschrieben. Die Struktur des Stromungsbiides van leicht iiberkritischen hexagonalen Zellen und von 
Rollzeflen, sowie ihre zugeh~rigen W~rmestr~me werden untersucht. Eine Stabilit~tsanalyse der 

miiglichen Str~mun&szust~nde wird beschrieben 

KOHBEKlJMfl GEHAPA-PEJlEfl KOHEYHOR AMl-IJlMTY,Qbl 

AIIIIOTZW~~I - &HC?,H HCnHHe~Hbl~ aHa,SA3 PlCHCTOii KOHBCKUXM, BbI3bIB~eMOii nOlW.iiMHbIMH CHJlaMIi 

N CH_WMH nOBepXHOCTHOr0 HaTSKeHWI B Har~~CMOM EHA3Y C,TW ~~OCT~ KOHelHOii TOfl~~H~. 

kkC.“enyeTCK CTp,‘KTypa CJfa60 Ha~KpEfTH%%KHX IIECTWr~HHbiX II BanHKOBbIX +OPM TeYeHHR W 

xapaKTepuan fins HEX senwimia ~enno~oro noToxa. aau attanki3 ycfoiisneoc~~ a03Mo)ICnbtx xonnex- 
THBHblX TWeHHti. 


